V = 4836.4 (9) Å³

Mo $K\alpha$ radiation

 $0.63 \times 0.34 \times 0.21 \text{ mm}$

20567 measured reflections

7051 independent reflections

3435 reflections with $I > 2\sigma(I)$

 $\mu = 1.83 \text{ mm}^-$

T = 296 K

 $R_{\rm int} = 0.041$

Z = 8

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-(4-Bromophenyl)-1-(2,6-difluorobenzyl)-3-(3,4,5-trimethoxyphenyl)-1H-1,2,4triazole-5(4H)-thione

Hoong-Kun Fun,^a*‡ Chin Wei Ooi,^a B. Chandrakantha,^b Arun M. Isloor^c and Prakash Shetty^d

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bDepartment of Chemistry, Manipal Institute of Technology, Manipal 576 104, India, ^cMedicinal Chemistry Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and ^dDepartment of Printing, Manipal Institute of Technology, Manipal 576 104, India

Correspondence e-mail: hkfun@usm.my

Received 3 December 2011; accepted 4 December 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; *R* factor = 0.048; *wR* factor = 0.158; data-to-parameter ratio = 22.7.

In the title compound, $C_{24}H_{20}BrF_2N_3O_3S$, the triazole ring (r.m.s. deviation = 0.0107 Å) makes dihedral angles of 28.18 (14), 63.76 (14) and 77.01 (18)°, respectively, with the trimethoxy-, bromo-, and difluoro-substituted benzene rings. The C atoms of the meta methoxy groups are roughly coplanar with their ring [displacements = -0.289 (4) and 0.083 (7) Å], whereas the C atom of the para group is displaced [1.117 (3) Å]. In the crystal, inversion dimers linked by two pairs of $C-H \cdots O$ hydrogen bonds occur. The ring motif of the two hydrogen bonds to their symmetry-generated O-atom acceptors is $R_2^2(8)$.

Related literature

For a related structure and background to 1,2,4-triazole derivatives, see: Fun et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data

$C_{24}H_{20}BrF_2N_3O_3S$	
$M_r = 548.40$	
Monoclinic, $C2/c$	
a = 17.6694 (18) Å	
b = 15.5299 (16) Å	
c = 18.0855 (19) Å	
$\beta = 102.955 \ (2)^{\circ}$	

Data collection

Bruker APEX DUO CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.391, \ T_{\max} = 0.703$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	310 parameters
$wR(F^2) = 0.158$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.30 \text{ e} \text{ Å}^{-3}$
7051 reflections	$\Delta \rho_{\rm min} = -0.44 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdots A$ $D - H \cdot \cdot \cdot A$ $C13-H13A\cdotsO1^{i}$ 0.93 2.54 3.284 (3) 137 $C14-H14A\cdots O2^{i}$ 0.93 2.403.142 (3) 137

Symmetry code: (i) -x, y, $-z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HKF and CWO thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). CWO thanks the Malaysian Government and USM for the award of the post of research assistant under the Research University Grant (1001/PFIZIK/811151). AMI thanks the Board for Research in Nuclear Sciences, Department of Atomic Energy, Government of India, for the Young Scientist award.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6551).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin USA
- Fun, H.-K., Asik, S. I. J., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2011). Acta Cryst. E67, 03422-03423.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

[‡] Thomson Reuters ResearcherID: A-3561-2009.

Acta Cryst. (2012). E68, 089 [doi:10.1107/S1600536811052330]

4-(4-Bromophenyl)-1-(2,6-difluorobenzyl)-3-(3,4,5-trimethoxyphenyl)-1*H*-1,2,4-triazole-5(4*H*)-thione

H.-K. Fun, C. W. Ooi, B. Chandrakantha, A. M. Isloor and P. Shetty

Comment

As part of our ongoing studies of 1,2,4-triazole derivatives (Fun *et al.*, 2011), we now describe the structure of the title compound, (I).

In the title compound (Fig. 1), the triazole (N1–N3/C7/C8) ring is essentially planar with maximum deviation of 0.015 (3) Å at atom C8. The central triazole ring makes dihedral angles of 28.18 (14)°, 63.76 (14)° and 77.01 (18)° respectively with the methoxy (C1–C6), bromo (C9–C14), and difluoro (C16–C21) substituted phenyl rings. The bond lengths are comparable to a related structure (Fun *et al.*, 2011).

In the crystal (Fig. 2), the intermolecular C13—H13A···O1 and C14—H14A···O2 hydrogen bonds (Table 1) link the molecules to form R_2^2 (8) ring motifs (Bernstein *et al.*, 1995), leading to the formation of dimers.

Experimental

To a solution of 4-(4-bromophenyl)-5-(3,4,5-trimethoxyphenyl)-4H-1,2,4- triazole-3-thiol (1 g, 0.0023 mol) in dry acetonitrile (20 ml) was added potassium carbonate (0.65 g, 0.0047 mol) followed by 2,6-difluorobenzyl bromide (0.52 g, 0.0025 mol) at room temperature. After the addition, the reaction mixture was stirred at room temperature for 6 hr. Progress of reaction was monitored by TLC. After the completion of the reaction, the reaction mixture was concentrated and purified by column chromatography using pet ether, ethyl acetate as an eluent to afford title compound as a colourless solid. Yield 1.1 g, 85%. *M*.p: 448–453 K.

Refinement

All the H atoms were positioned geometrically and refined using a riding model with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$ (C—H = 0.93, 0.96 or 0.97 Å). A rotating group model was applied to the methyl group. In the final refinement, one outliner (-2 0 8) was omitted.

Figures

Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.

Fig. 2. The crystal packing of the title compound, viewed down b axis. Dashed lines represent hydrogen bonds.

4-(4-Bromophenyl)-1-(2,6-difluorobenzyl)-3-(3,4,5-trimethoxyphenyl)-1H-1,2,4-triazole-5(4H)-thione

Crystal data	
$C_{24}H_{20}BrF_2N_3O_3S$	F(000) = 2224
$M_r = 548.40$	$D_{\rm x} = 1.506 {\rm ~Mg~m}^{-3}$
Monoclinic, $C2/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 3384 reflections
<i>a</i> = 17.6694 (18) Å	$\theta = 2.3 - 22.8^{\circ}$
<i>b</i> = 15.5299 (16) Å	$\mu = 1.83 \text{ mm}^{-1}$
c = 18.0855 (19) Å	T = 296 K
$\beta = 102.955 \ (2)^{\circ}$	Block, colourless
$V = 4836.4 (9) \text{ Å}^3$	$0.63 \times 0.34 \times 0.21 \text{ mm}$
Z = 8	

Data collection

Bruker APEX DUO CCD diffractometer	7051 independent reflections
Radiation source: fine-focus sealed tube	3435 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.041$
φ and ω scans	$\theta_{\text{max}} = 30.1^\circ, \theta_{\text{min}} = 1.8^\circ$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009)	$h = -23 \rightarrow 24$
$T_{\min} = 0.391, T_{\max} = 0.703$	$k = -21 \rightarrow 20$
20567 measured reflections	$l = -25 \rightarrow 25$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.158$	H-atom parameters constrained
<i>S</i> = 1.00	$w = 1/[\sigma^2(F_o^2) + (0.0774P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
7051 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$

310 parameters	$\Delta \rho_{max} = 0.30 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.44 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.20988 (3)	0.55993 (2)	0.21898 (3)	0.1130 (2)
S1	0.42133 (3)	0.87749 (5)	0.42274 (5)	0.0673 (2)
F1	0.32718 (17)	1.22282 (19)	0.4955 (2)	0.1545 (12)
F2	0.42211 (15)	0.98693 (17)	0.64170 (17)	0.1319 (10)
01	-0.02973 (10)	0.76975 (11)	0.37056 (14)	0.0706 (6)
O2	-0.11356 (9)	0.91409 (13)	0.34642 (12)	0.0649 (5)
O3	-0.04768 (11)	1.06802 (12)	0.37062 (18)	0.0906 (8)
N1	0.26407 (10)	0.88186 (13)	0.41197 (11)	0.0444 (5)
N2	0.24694 (11)	1.00640 (14)	0.46509 (13)	0.0564 (6)
N3	0.32475 (11)	0.99013 (14)	0.46984 (13)	0.0557 (6)
C1	0.09112 (12)	0.85034 (16)	0.40263 (15)	0.0498 (6)
H1A	0.1210	0.8005	0.4104	0.060*
C2	0.01028 (13)	0.84511 (16)	0.38229 (15)	0.0520 (6)
C3	-0.03423 (13)	0.91950 (17)	0.37176 (16)	0.0536 (6)
C4	0.00131 (13)	0.99918 (17)	0.38142 (18)	0.0609 (7)
C5	0.08213 (14)	1.00515 (17)	0.40030 (18)	0.0599 (7)
H5A	0.1062	1.0588	0.4056	0.072*
C6	0.12633 (13)	0.93048 (15)	0.41108 (15)	0.0492 (6)
C7	0.21156 (13)	0.94011 (15)	0.43001 (15)	0.0487 (6)
C8	0.33770 (12)	0.91620 (17)	0.43633 (14)	0.0493 (6)
С9	0.24939 (12)	0.80534 (15)	0.36716 (13)	0.0428 (5)
C10	0.27705 (15)	0.72710 (18)	0.39855 (16)	0.0595 (7)
H10A	0.3036	0.7241	0.4491	0.071*
C11	0.26513 (18)	0.65378 (18)	0.35485 (18)	0.0694 (8)
H11A	0.2838	0.6010	0.3754	0.083*
C12	0.22515 (15)	0.65947 (17)	0.28023 (16)	0.0577 (7)
C13	0.19658 (14)	0.73658 (17)	0.24914 (15)	0.0544 (6)
H13A	0.1687	0.7391	0.1991	0.065*
C14	0.20950 (13)	0.81059 (15)	0.29267 (13)	0.0468 (6)
H14A	0.1914	0.8634	0.2718	0.056*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C15	0.38362 (16)	1.0561 (2)	0.49590 (19)	0.0726 (9)
H15A	0.3819	1.0975	0.4554	0.087*
H15B	0.4344	1.0292	0.5063	0.087*
C16	0.37404 (13)	1.10289 (16)	0.56521 (15)	0.0505 (6)
C17	0.34767 (18)	1.1854 (2)	0.5644 (2)	0.0794 (10)
C18	0.3428 (3)	1.2317 (3)	0.6272 (5)	0.125 (2)
H18A	0.3239	1.2878	0.6236	0.149*
C19	0.3670 (3)	1.1915 (4)	0.6960 (4)	0.130 (2)
H19A	0.3644	1.2215	0.7399	0.156*
C20	0.3937 (2)	1.1119 (4)	0.7023 (2)	0.1091 (15)
H20A	0.4101	1.0860	0.7495	0.131*
C21	0.39669 (18)	1.0688 (2)	0.6371 (2)	0.0739 (9)
C22	0.01256 (18)	0.69298 (18)	0.3665 (2)	0.0775 (9)
H22A	-0.0230	0.6465	0.3499	0.116*
H22B	0.0441	0.6799	0.4158	0.116*
H22C	0.0453	0.7006	0.3312	0.116*
C23	-0.15565 (16)	0.9151 (2)	0.4041 (2)	0.0742 (8)
H23A	-0.2103	0.9147	0.3816	0.111*
H23B	-0.1428	0.9661	0.4343	0.111*
H23C	-0.1425	0.8652	0.4357	0.111*
C24	-0.0154 (2)	1.1508 (2)	0.3820 (4)	0.1291 (19)
H24A	-0.0563	1.1929	0.3738	0.194*
H24B	0.0173	1.1606	0.3470	0.194*
H24C	0.0148	1.1557	0.4330	0.194*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.1658 (5)	0.0668 (2)	0.0968 (3)	0.0079 (2)	0.0091 (3)	-0.0314 (2)
S1	0.0325 (3)	0.0908 (5)	0.0767 (5)	0.0032 (3)	0.0079 (3)	-0.0227 (4)
F1	0.127 (2)	0.136 (2)	0.212 (3)	0.0421 (17)	0.065 (2)	0.094 (2)
F2	0.130 (2)	0.1086 (17)	0.160 (2)	0.0429 (15)	0.0390 (18)	0.0481 (17)
01	0.0405 (9)	0.0573 (11)	0.1115 (17)	-0.0094 (8)	0.0114 (10)	-0.0154 (11)
O2	0.0308 (8)	0.0846 (12)	0.0747 (13)	-0.0053 (8)	0.0021 (8)	-0.0160 (11)
O3	0.0420 (10)	0.0622 (13)	0.159 (2)	0.0074 (9)	0.0055 (13)	-0.0095 (13)
N1	0.0295 (8)	0.0537 (11)	0.0469 (11)	-0.0002 (8)	0.0022 (8)	-0.0066 (9)
N2	0.0328 (9)	0.0679 (13)	0.0687 (14)	-0.0089 (9)	0.0119 (10)	-0.0213 (11)
N3	0.0308 (9)	0.0750 (14)	0.0608 (13)	-0.0074 (9)	0.0094 (9)	-0.0233 (12)
C1	0.0336 (11)	0.0548 (14)	0.0599 (16)	0.0018 (10)	0.0084 (11)	-0.0019 (12)
C2	0.0350 (11)	0.0592 (15)	0.0600 (16)	-0.0068 (11)	0.0068 (11)	-0.0103 (12)
C3	0.0296 (11)	0.0649 (15)	0.0623 (16)	-0.0018 (10)	0.0015 (11)	-0.0110 (13)
C4	0.0348 (12)	0.0562 (15)	0.087 (2)	0.0059 (11)	0.0041 (13)	-0.0115 (14)
C5	0.0379 (12)	0.0535 (14)	0.085 (2)	-0.0026 (11)	0.0075 (13)	-0.0096 (14)
C6	0.0303 (10)	0.0581 (14)	0.0578 (15)	-0.0025 (10)	0.0068 (10)	-0.0109 (12)
C7	0.0326 (11)	0.0568 (14)	0.0549 (15)	-0.0021 (10)	0.0063 (10)	-0.0113 (12)
C8	0.0308 (11)	0.0706 (16)	0.0440 (13)	-0.0032 (10)	0.0034 (10)	-0.0065 (12)
C9	0.0314 (10)	0.0508 (13)	0.0445 (13)	0.0033 (9)	0.0050 (10)	-0.0043 (11)
C10	0.0605 (15)	0.0619 (16)	0.0481 (15)	0.0093 (13)	-0.0046 (12)	0.0023 (13)

C11	0.082 (2)	0.0491 (15)	0.071 (2)	0.0130 (14)	0.0040 (16)	0.0051 (14)
C12	0.0579 (15)	0.0527 (14)	0.0610 (18)	0.0018 (12)	0.0101 (13)	-0.0101 (13)
C13	0.0507 (14)	0.0624 (16)	0.0452 (14)	-0.0022 (12)	0.0007 (11)	-0.0021 (12)
C14	0.0412 (12)	0.0486 (13)	0.0470 (14)	0.0024 (10)	0.0020 (11)	0.0019 (11)
C15	0.0457 (14)	0.099 (2)	0.077 (2)	-0.0327 (14)	0.0223 (14)	-0.0379 (17)
C16	0.0325 (11)	0.0570 (15)	0.0620 (17)	-0.0094 (10)	0.0105 (11)	-0.0123 (13)
C17	0.0631 (18)	0.0624 (18)	0.120 (3)	-0.0035 (15)	0.0364 (19)	0.007 (2)
C18	0.091 (3)	0.065 (2)	0.245 (7)	-0.025 (2)	0.095 (4)	-0.060 (4)
C19	0.088 (3)	0.165 (6)	0.155 (5)	-0.062 (4)	0.062 (4)	-0.102 (5)
C20	0.076 (2)	0.184 (5)	0.067 (2)	-0.029 (3)	0.0154 (19)	-0.026 (3)
C21	0.0535 (16)	0.088 (2)	0.080 (2)	-0.0048 (15)	0.0135 (15)	-0.0103 (19)
C22	0.0619 (17)	0.0548 (16)	0.112 (3)	-0.0076 (14)	0.0124 (17)	-0.0017 (17)
C23	0.0445 (14)	0.085 (2)	0.095 (2)	-0.0043 (14)	0.0199 (16)	-0.0046 (19)
C24	0.067 (2)	0.056 (2)	0.251 (6)	0.0080 (16)	0.009 (3)	0.000 (3)

Geometric parameters (Å, °)

Br1C12	1.885 (3)	C10—H10A	0.9300
S1—C8	1.664 (2)	C11—C12	1.379 (4)
F1—C17	1.349 (5)	C11—H11A	0.9300
F2—C21	1.344 (4)	C12—C13	1.370 (4)
O1—C2	1.359 (3)	C13—C14	1.383 (3)
O1—C22	1.418 (3)	С13—Н13А	0.9300
O2—C3	1.376 (3)	C14—H14A	0.9300
O2—C23	1.411 (4)	C15—C16	1.491 (4)
O3—C4	1.362 (3)	C15—H15A	0.9700
O3—C24	1.403 (4)	C15—H15B	0.9700
N1—C8	1.384 (3)	C16—C17	1.363 (4)
N1—C7	1.386 (3)	C16—C21	1.378 (4)
N1—C9	1.429 (3)	C17—C18	1.363 (7)
N2—C7	1.294 (3)	C18—C19	1.372 (8)
N2—N3	1.381 (3)	C18—H18A	0.9300
N3—C8	1.342 (3)	C19—C20	1.319 (7)
N3—C15	1.461 (3)	C19—H19A	0.9300
C1—C6	1.384 (3)	C20—C21	1.367 (6)
C1—C2	1.395 (3)	C20—H20A	0.9300
C1—H1A	0.9300	C22—H22A	0.9600
C2—C3	1.386 (3)	C22—H22B	0.9600
C3—C4	1.381 (4)	C22—H22C	0.9600
C4—C5	1.395 (3)	C23—H23A	0.9600
C5—C6	1.387 (3)	С23—Н23В	0.9600
C5—H5A	0.9300	С23—Н23С	0.9600
C6—C7	1.475 (3)	C24—H24A	0.9600
C9—C14	1.376 (3)	C24—H24B	0.9600
C9—C10	1.383 (3)	C24—H24C	0.9600
C10—C11	1.375 (4)		
C2—O1—C22	118.1 (2)	С12—С13—Н13А	120.2
C3—O2—C23	114.8 (2)	C14—C13—H13A	120.2
C4—O3—C24	118.3 (2)	C9—C14—C13	119.4 (2)

C8—N1—C7	107.74 (19)	C9—C14—H14A	120.3
C8—N1—C9	122.63 (19)	C13—C14—H14A	120.3
C7—N1—C9	129.08 (17)	N3—C15—C16	114.0 (2)
C7—N2—N3	104.45 (19)	N3—C15—H15A	108.8
C8—N3—N2	113.36 (18)	C16—C15—H15A	108.8
C8—N3—C15	124.4 (2)	N3—C15—H15B	108.8
N2—N3—C15	121.2 (2)	C16—C15—H15B	108.8
C6—C1—C2	119.3 (2)	H15A—C15—H15B	107.7
C6—C1—H1A	120.3	C17—C16—C21	113.4 (3)
C2—C1—H1A	120.3	C17—C16—C15	123.5 (3)
O1—C2—C3	115.9 (2)	C21-C16-C15	122.8 (3)
O1—C2—C1	123.9 (2)	F1—C17—C18	119.2 (4)
C3—C2—C1	120.2 (2)	F1—C17—C16	115.8 (4)
O2—C3—C4	119.8 (2)	C18—C17—C16	124.9 (4)
O2—C3—C2	119.9 (2)	C17—C18—C19	116.8 (4)
C4—C3—C2	120.1 (2)	C17—C18—H18A	121.6
O3—C4—C3	115.4 (2)	C19—C18—H18A	121.6
O3—C4—C5	124.5 (2)	C20-C19-C18	122.5 (5)
C3—C4—C5	120.1 (2)	С20—С19—Н19А	118.7
C6—C5—C4	119.5 (2)	С18—С19—Н19А	118.7
С6—С5—Н5А	120.3	C19—C20—C21	117.8 (5)
C4—C5—H5A	120.3	C19—C20—H20A	121.1
C1—C6—C5	120.7 (2)	C21—C20—H20A	121.1
C1—C6—C7	121.8 (2)	F2—C21—C20	119.1 (4)
C5—C6—C7	117.5 (2)	F2—C21—C16	116.4 (3)
N2	111.06 (19)	C20—C21—C16	124.5 (4)
N2—C7—C6	123.4 (2)	O1—C22—H22A	109.5
N1—C7—C6	125.6 (2)	O1—C22—H22B	109.5
N3—C8—N1	103.31 (19)	H22A—C22—H22B	109.5
N3—C8—S1	128.53 (17)	O1—C22—H22C	109.5
N1—C8—S1	128.1 (2)	H22A—C22—H22C	109.5
C14—C9—C10	120.7 (2)	H22B—C22—H22C	109.5
C14—C9—N1	119.6 (2)	O2—C23—H23A	109.5
C10-C9-N1	119.7 (2)	O2—C23—H23B	109.5
C11—C10—C9	119.8 (2)	H23A—C23—H23B	109.5
C11—C10—H10A	120.1	O2—C23—H23C	109.5
C9—C10—H10A	120.1	H23A—C23—H23C	109.5
C10-C11-C12	119.2 (2)	H23B—C23—H23C	109.5
C10-C11-H11A	120.4	O3—C24—H24A	109.5
C12—C11—H11A	120.4	O3—C24—H24B	109.5
C13—C12—C11	121.2 (2)	H24A—C24—H24B	109.5
C13—C12—Br1	119.0 (2)	O3—C24—H24C	109.5
C11—C12—Br1	119.8 (2)	H24A—C24—H24C	109.5
C12—C13—C14	119.6 (2)	H24B—C24—H24C	109.5
C7—N2—N3—C8	18(3)	C15—N3—C8—S1	56(4)
C7-N2-N3-C15	170 8 (3)	C7-N1-C8-N3	2.5 (3)
$C_{22} = 01 = C_{2} = C_{3}$	168.4 (3)	C9-N1-C8-N3	174.7 (2)
$C_{22} = 01 = C_{2} = C_{1}$	-107(4)	C7-N1-C8-S1	-1743(2)
$C_{6} = C_{1} = C_{2} = 0_{1}$	178.1 (3)	C9-N1-C8-S1	-2.1(4)
	1,0.1 (5)		2·· (¬)

C6—C1—C2—C3	-0.9 (4)	C8—N1—C9—C14	-110.9 (3)
C23—O2—C3—C4	-89.1 (3)	C7—N1—C9—C14	59.5 (3)
C23—O2—C3—C2	95.5 (3)	C8—N1—C9—C10	67.5 (3)
O1—C2—C3—O2	-3.8 (4)	C7—N1—C9—C10	-122.1 (3)
C1—C2—C3—O2	175.3 (2)	C14—C9—C10—C11	0.5 (4)
O1—C2—C3—C4	-179.2 (3)	N1-C9-C10-C11	-178.0 (2)
C1—C2—C3—C4	0.0 (4)	C9-C10-C11-C12	-0.4 (4)
C24—O3—C4—C3	177.9 (4)	C10-C11-C12-C13	-0.6 (5)
C24—O3—C4—C5	-2.6 (6)	C10-C11-C12-Br1	178.9 (2)
O2—C3—C4—O3	5.4 (4)	C11-C12-C13-C14	1.5 (4)
C2—C3—C4—O3	-179.2 (3)	Br1-C12-C13-C14	-177.93 (19)
O2—C3—C4—C5	-174.1 (3)	C10-C9-C14-C13	0.5 (4)
C2—C3—C4—C5	1.3 (5)	N1-C9-C14-C13	178.9 (2)
O3—C4—C5—C6	179.0 (3)	C12-C13-C14-C9	-1.5 (4)
C3—C4—C5—C6	-1.6 (5)	C8—N3—C15—C16	-146.7 (3)
C2—C1—C6—C5	0.7 (4)	N2-N3-C15-C16	45.6 (4)
C2—C1—C6—C7	-177.9 (2)	N3-C15-C16-C17	-106.4 (3)
C4—C5—C6—C1	0.6 (5)	N3-C15-C16-C21	78.7 (3)
C4—C5—C6—C7	179.2 (3)	C21—C16—C17—F1	177.9 (3)
N3—N2—C7—N1	-0.1 (3)	C15-C16-C17-F1	2.5 (4)
N3—N2—C7—C6	-178.9 (2)	C21-C16-C17-C18	-0.4 (4)
C8—N1—C7—N2	-1.6 (3)	C15-C16-C17-C18	-175.8 (3)
C9—N1—C7—N2	-173.1 (2)	F1-C17-C18-C19	-177.7 (4)
C8—N1—C7—C6	177.2 (3)	C16—C17—C18—C19	0.5 (6)
C9—N1—C7—C6	5.7 (4)	C17-C18-C19-C20	-0.1 (7)
C1-C6-C7-N2	-153.5 (3)	C18—C19—C20—C21	-0.3 (7)
C5-C6-C7-N2	27.9 (4)	C19—C20—C21—F2	-178.6 (3)
C1-C6-C7-N1	27.9 (4)	C19—C20—C21—C16	0.4 (6)
C5-C6-C7-N1	-150.7 (3)	C17—C16—C21—F2	178.9 (3)
N2—N3—C8—N1	-2.7 (3)	C15—C16—C21—F2	-5.7 (4)
C15—N3—C8—N1	-171.3 (3)	C17—C16—C21—C20	-0.1 (4)
N2—N3—C8—S1	174.1 (2)	C15-C16-C21-C20	175.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
C13—H13A···O1 ⁱ	0.93	2.54	3.284 (3)	137
C14—H14A···O2 ⁱ	0.93	2.40	3.142 (3)	137
Symmetry codes: (i) $-x$, y , $-z+1/2$.				

